首页> 外文OA文献 >QoE-Driven In-Network Optimization for Adaptive Video Streaming Based on Packet Sampling Measurements
【2h】

QoE-Driven In-Network Optimization for Adaptive Video Streaming Based on Packet Sampling Measurements

机译:QoE驱动的基于数据包采样测量的自适应视频流网络内优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

HTTP Adaptive Streaming (HAS) is becoming the de-facto standard for adaptive streaming solutions. In HAS, a video is temporally split into segments which are encoded at different quality rates. The client can then autonomously decide, based on the current buffer filling and network conditions, which quality representation it will download. Each of these players strives to optimize their individual quality, which leads to bandwidth competition, causing quality oscillations and buffer starvations. This article proposes a solution to alleviate these problems by deploying in-network quality optimization agents, which monitor the available throughput using sampling-based measurement techniques and optimize the quality of each client, based on a HAS Quality of Experience (QoE) metric. This in-network optimization is achieved by solving a linear optimization problem both using centralized as well as distributed algorithms. The proposed hybrid QoE-driven approach allows the client to take into account the in-network decisions during the rate adaptation process, while still keeping the ability to react to sudden bandwidth fluctuations in the local network. The proposed approach allows improving existing autonomous quality selection heuristics by at least 30%, while outperforming an in-network approach using purely bitrate-driven optimization by up to 19%.
机译:HTTP自适应流(HAS)正在成为自适应流解决方案的实际标准。在HAS中,视频在时间上分为多个片段,这些片段以不同的质量率进行编码。然后,客户端可以根据当前的缓冲区填充和网络状况,自主决定它将下载哪种质量表示。这些参与者中的每一个都努力优化自己的质量,从而导致带宽竞争,从而导致质量振荡和缓冲区不足。本文提出了一种解决方案,可通过部署网络内质量优化代理来缓解这些问题,该代理使用基于采样的测量技术来监视可用吞吐量,并基于HAS体验质量(QoE)指标来优化每个客户端的质量。这种网络内优化是通过使用集中式算法和分布式算法来解决线性优化问题而实现的。提出的混合QoE驱动方法允许客户端在速率自适应过程中考虑网络内决策,同时仍保持对本地网络中突然带宽波动做出反应的能力。所提出的方法可以将现有的自主质量选择启发式方法至少提高30%,而使用纯比特率驱动的优化方法的网络内方法则可以提高19%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号